Machine learning models of addiction treatment outcomes: An exploratory analysis

Abby Stevens & Harold Pollack Research supported by NIDA grant U2C DA050098-01 (JCOIN Methodology and Advanced Analytics Resource Center)

Background and significance

- More Americans will likely die of drug overdose than will die from COVID-19 over the course of the Biden administration.
- Substance use disorder treatment--particularly medication opioid use disorder treatment (MOUD)--is a key, albeit imperfect tool to reduce mortality and morbidity associated with substance use.
- Identifying SUD patients likely to experience unfavorable treatment outcomes may
 - Inform the allocation of harm reduction efforts (e.g. naloxone) to specific subgroups at risk.
 - Generate hypotheses for improved service delivery through provision of complementary or focused resources.
 - Identified features may inform hypotheses or identify specific subgroups for future study designs that inform causal inference.
 - Analyses may inform changing treatment patterns and outcomes over time.
- A growing literature identifies patterns (e.g. poly-substance use) associated with fatal overdose. Less well-known is whether and how these patterns may be associated with adverse treatment outcomes.

Overdose Death Rates Involving Opioids, by Type, United States, 1999-2018

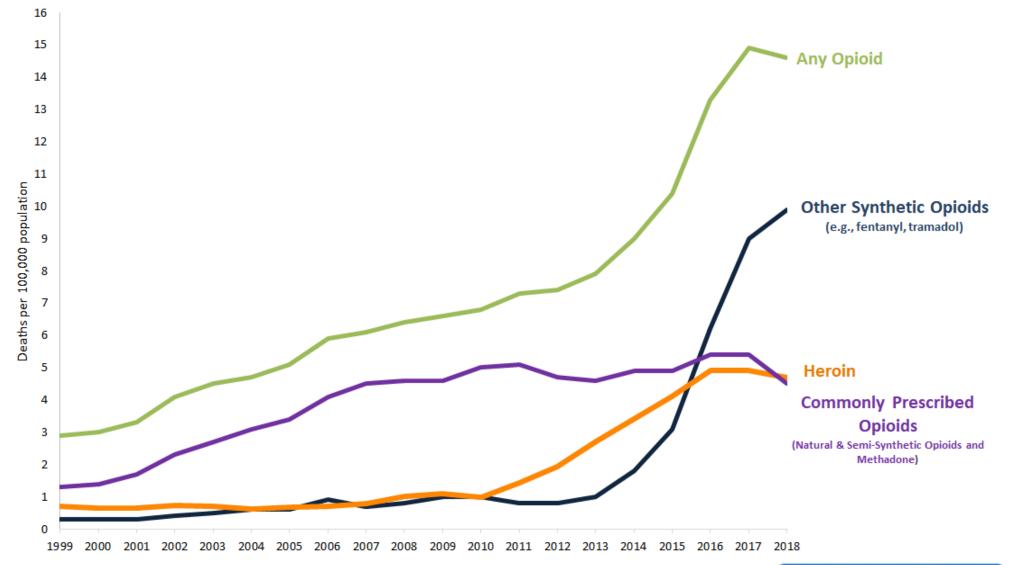
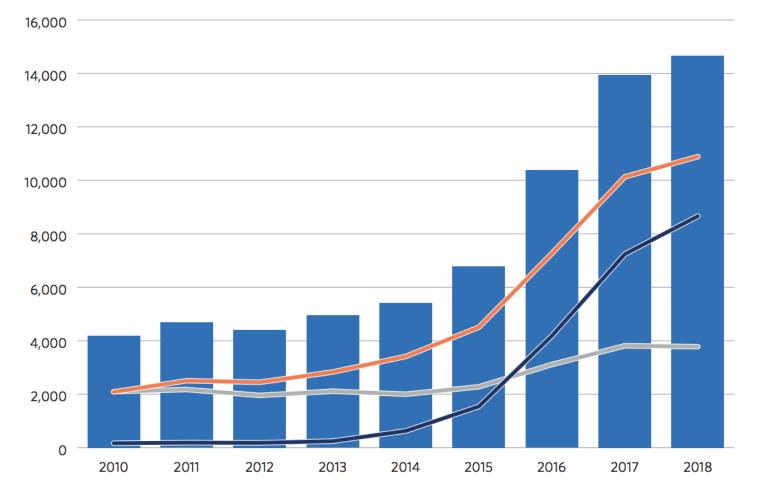


Figure 2 Opioids Involved in Cocaine-Related Overdose Deaths, 2010-2018



Number of cocaine-related overdose deaths

Number of cocaine-related overdose deaths involving opioids

- Number of cocaine-related overdose deaths involving other synthetic narcotics (fentanyl)

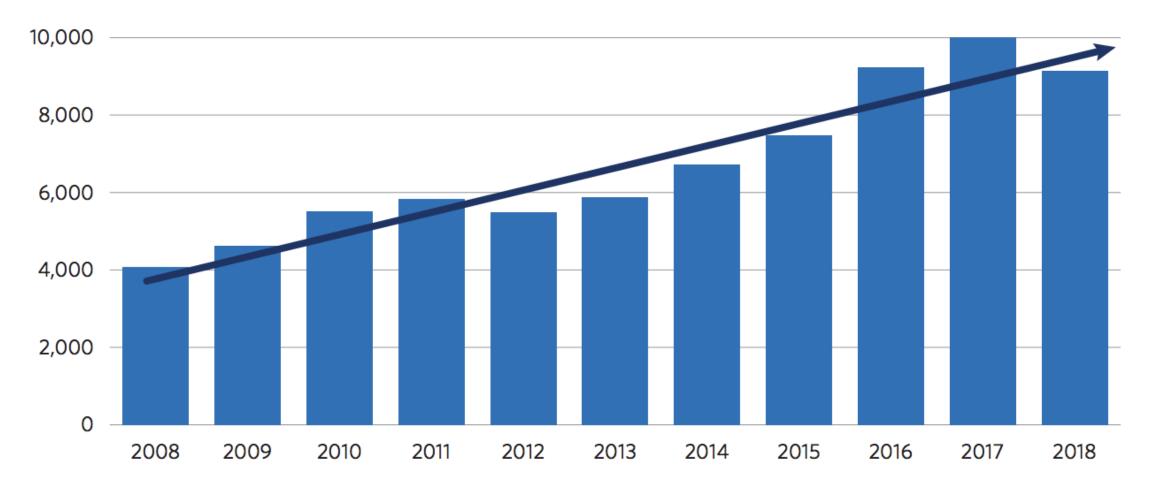
Number of cocaine-related deaths without opioids

Source: CDC Wonder

© 2020 The Pew Charitable Trusts

Figure 1

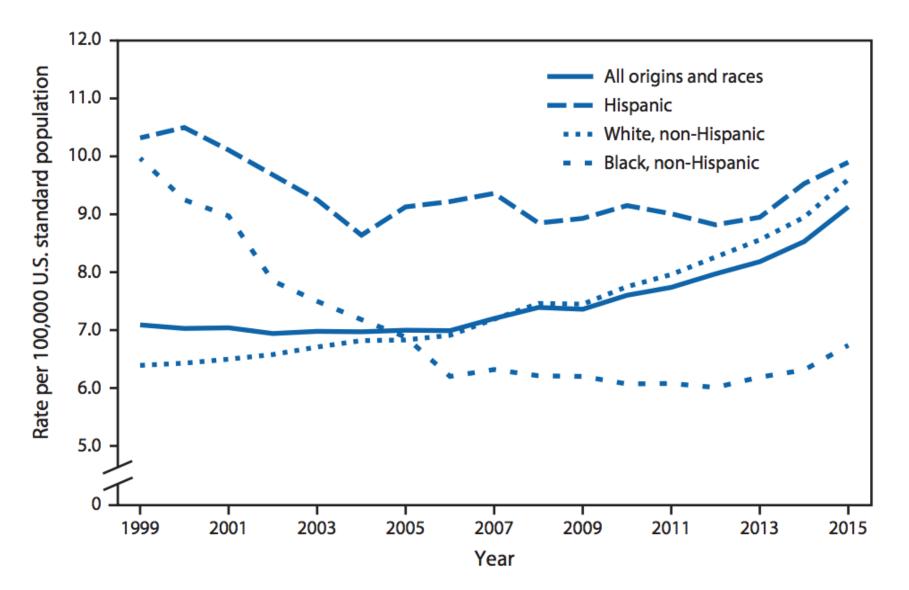
Overdose Deaths Involving Benzodiazepines and Opioids, 2008-2018



Source: CDC Wonder

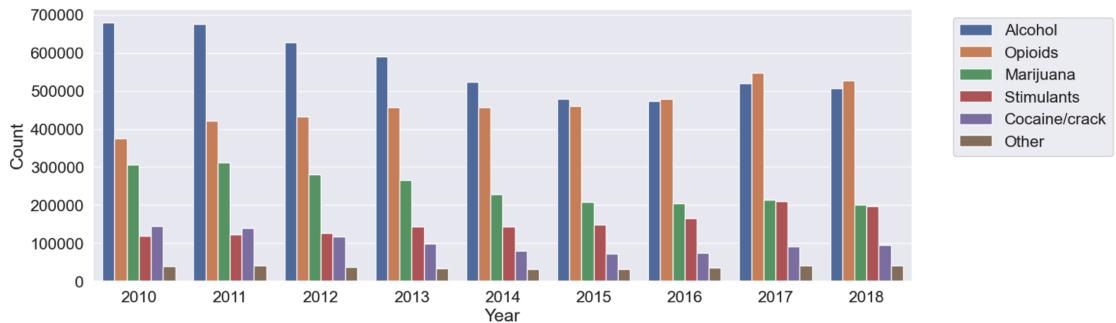
© 2020 The Pew Charitable Trusts

Age-Adjusted Death Rates* Attributable to Alcohol-Induced Causes,[†] by Race/Ethnicity — United States, 1999–2015



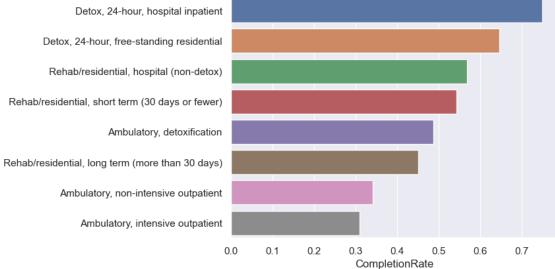
Treatment Episode Data Set (TEDS)

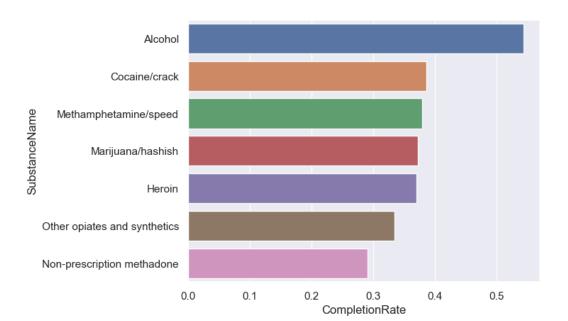
- National data system of annual admissions/discharges from substance use disorder treatment facilities.
- Includes facilities that report to individual state administrative data systems



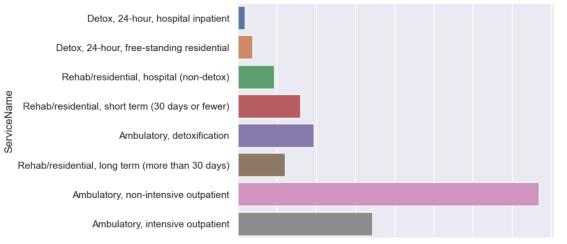
Annual discharges by substance type

"Successful" treatment completion

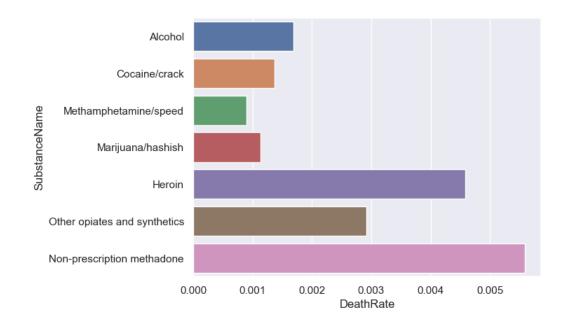




Deaths during treatment

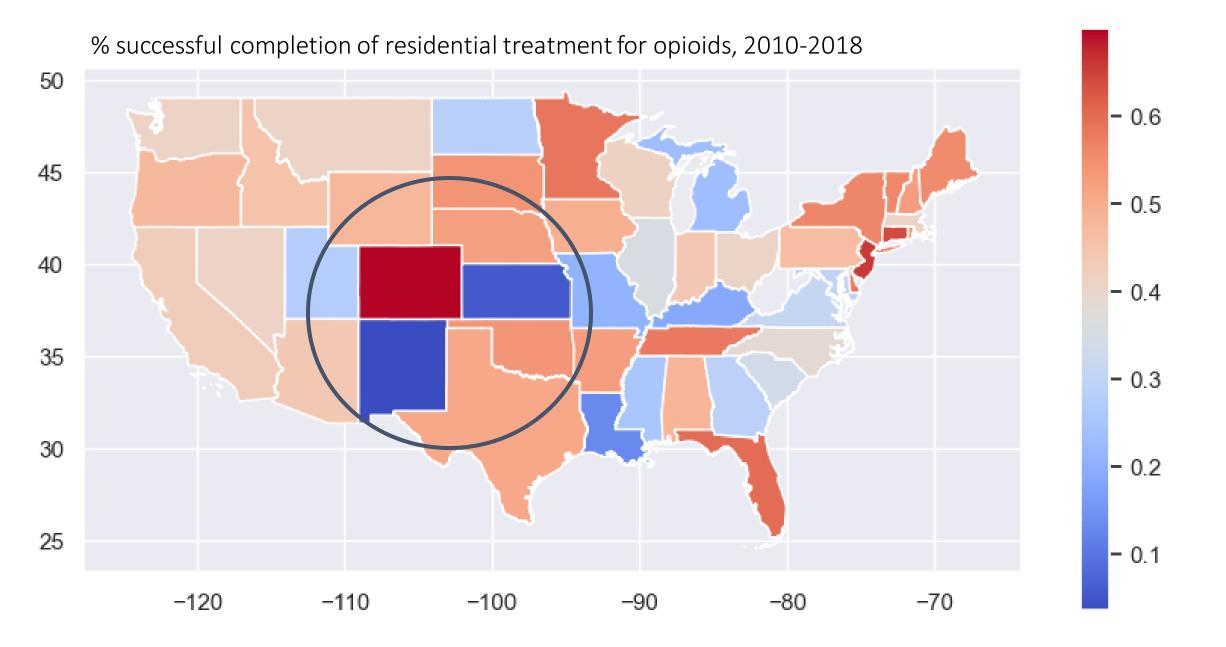


0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 DeathRate



ServiceName

ConviceN



Completion rate across all treatments by primary/secondary substance

- 0.55

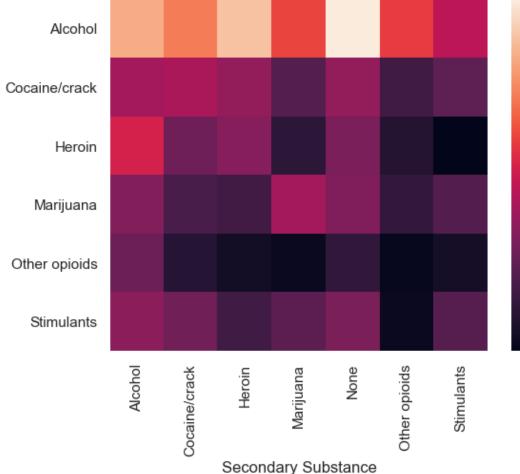
- 0.50

- 0.45

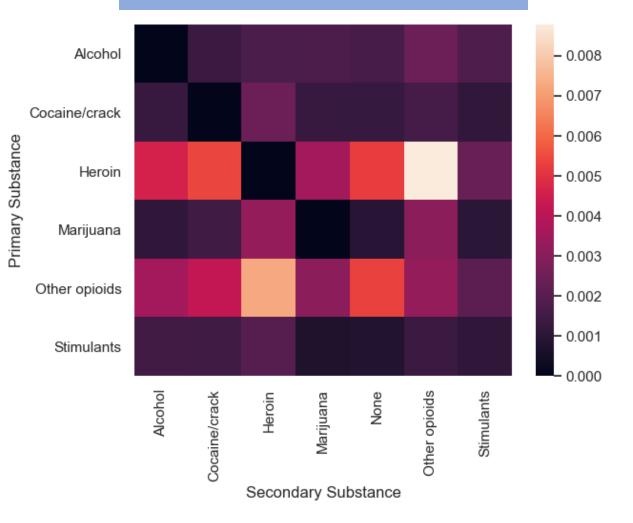
- 0.40

0.35

- 0.30



Death rate across all treatments by primary/secondary substance



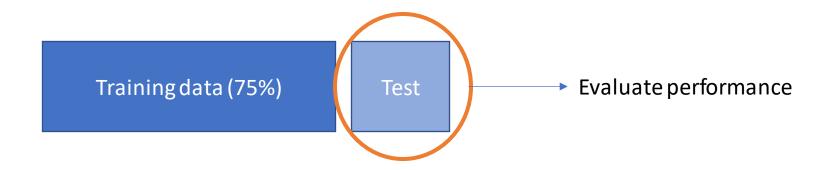
Predicting treatment outcomes

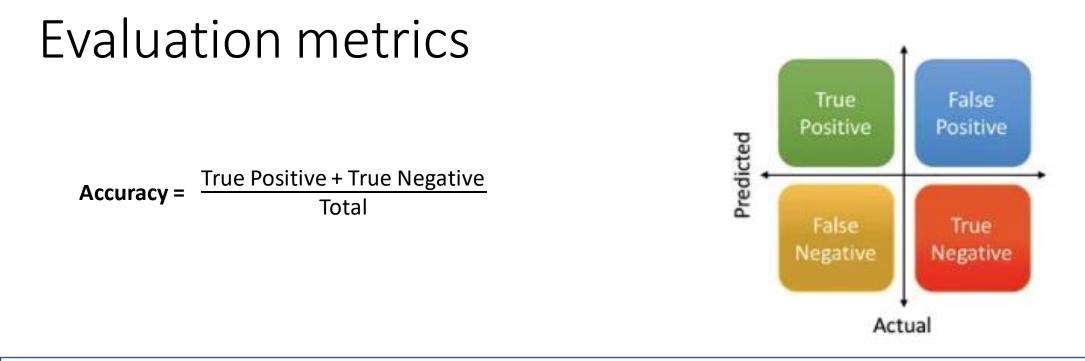
Understanding who is succeeding in treatment helps direct resources to those who aren't.

Binary classification: $y_i \in \{0,1\}, X_i = \mathbb{Q}$ demographics, other substances, payment info, etc.

Goal: Classify unseen sample y_j given X_j

Design decisions influence outcomes (e.g. handling missing data)





Precision (PPV) =	True Positive True Positive + False Positive				
Recall = (sensitivity)	True Positive True Positive + False Negative				
Specificity =	True Negative True Negative+ False Positive				

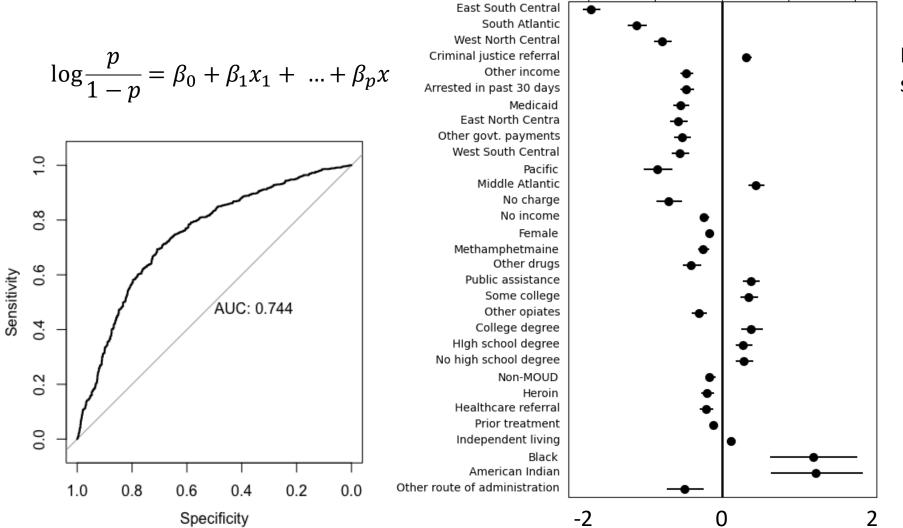
Of what the **model labeled positive**, how many were right? Precision is important when one wants to allocate scarce resources to those with this particular label.

Of actual **positive** samples, how many were correctly identified?

Of actual negative samples, how many were correctly identified?

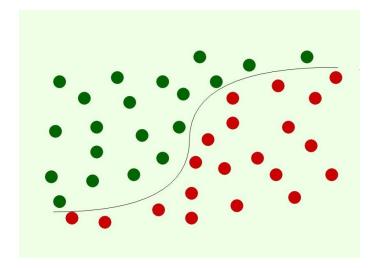
Logistic Regression

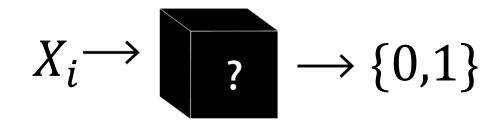
Year: 2018 Substance: Opioids Treatment: Residential rehab Response: Treatment completion



Estimated coefficients and standard errors

Logistic Regression vs. "Machine Learning"



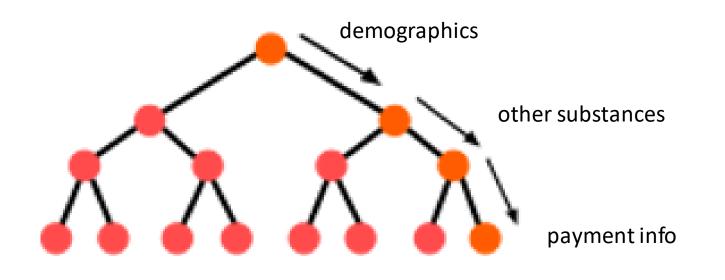


Linear model with interpretable coefficients Optimizes for **interpretability** "Black box"

Optimizes for **predictability**

Decision Tree Classifier

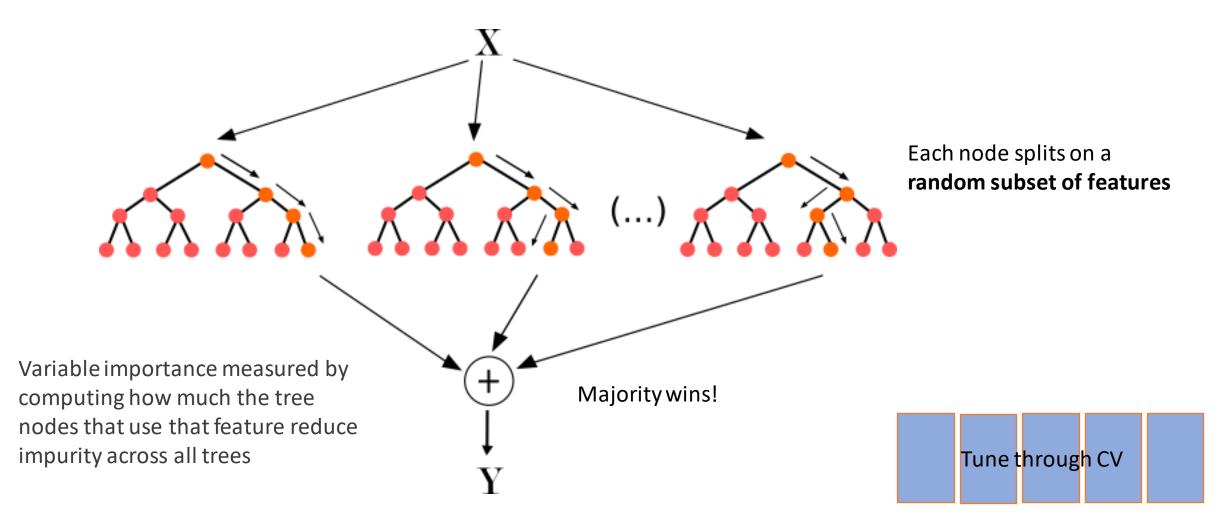
 $X_i = \{ demographics, other substances, payment info, etc. \}$



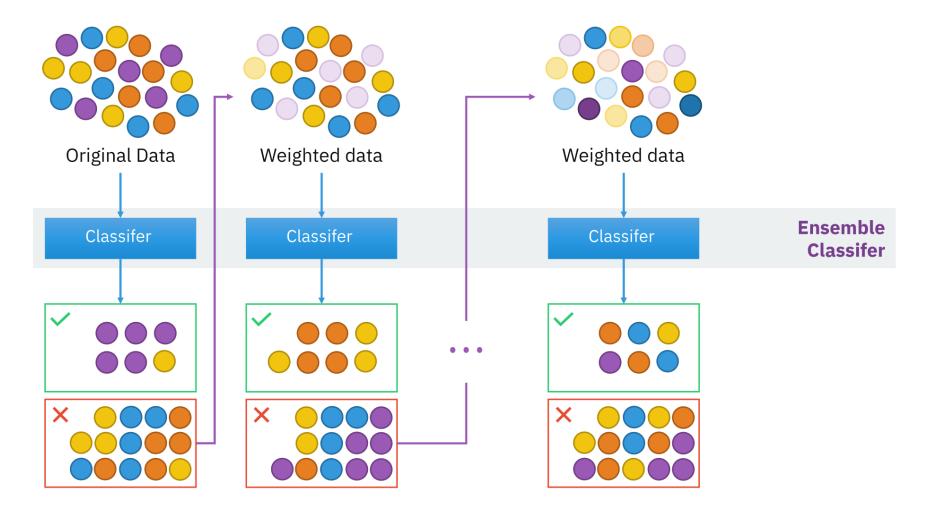
Split the data on the feature that results in the **largest information gain**

Tend to **overfit** the training data

Random Forest Classifier

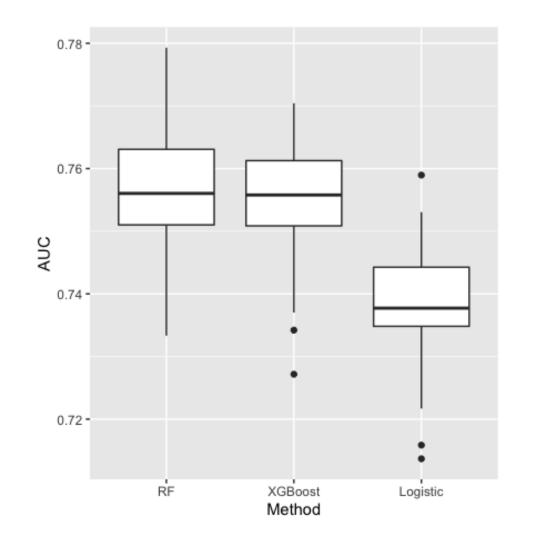


Beyond Random Forests - Boosting



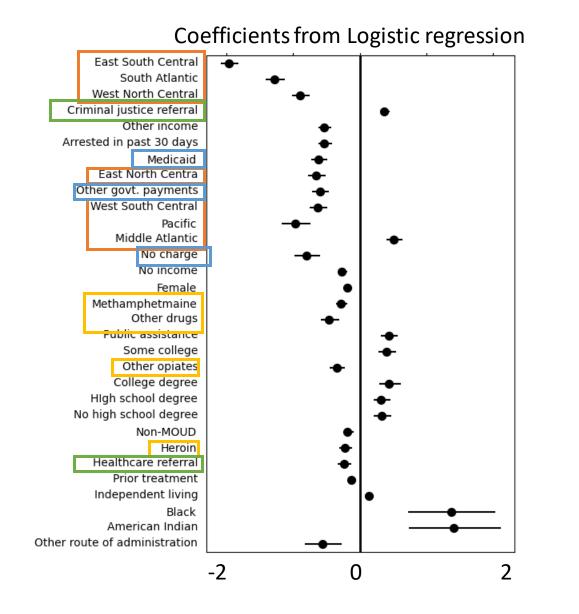
Predictive boost

Year: 2018 Substance: Opioids Treatment: Residential rehab Response: Treatment completion

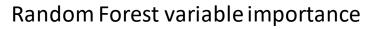


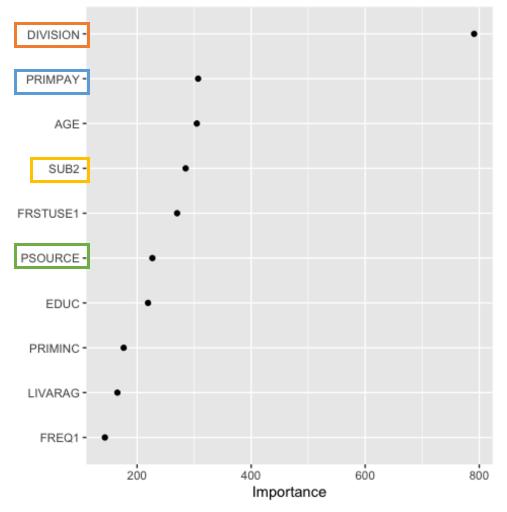
- ML methods optimized for better prediction
- Predictive boost consistent but not drastic
- ML framework allows for focus on outcomes, imperative for resource allocation

Are they interpretable?



Year: 2018 Substance: Opioids Treatment: Residential rehab Response: Treatment completion





Substantive questions to answer with TEDS

- How do predictability and emergent predictors differ between substances?
- Has predictability changed over time?
- Can we identify predictors of mortality?
- What are the key differences between short-term rehab and non-intensive outpatient?
- Do secondary substances impact predictability?

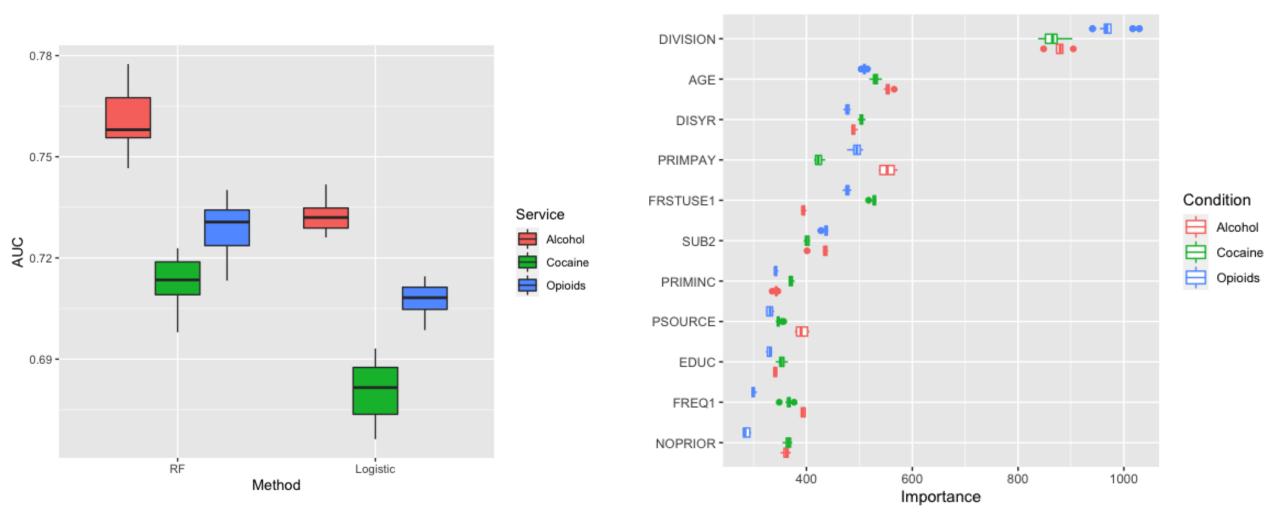
Year: 2018 Substance: Opioids, Cocaine, Alcohol Treatment: Residential rehab

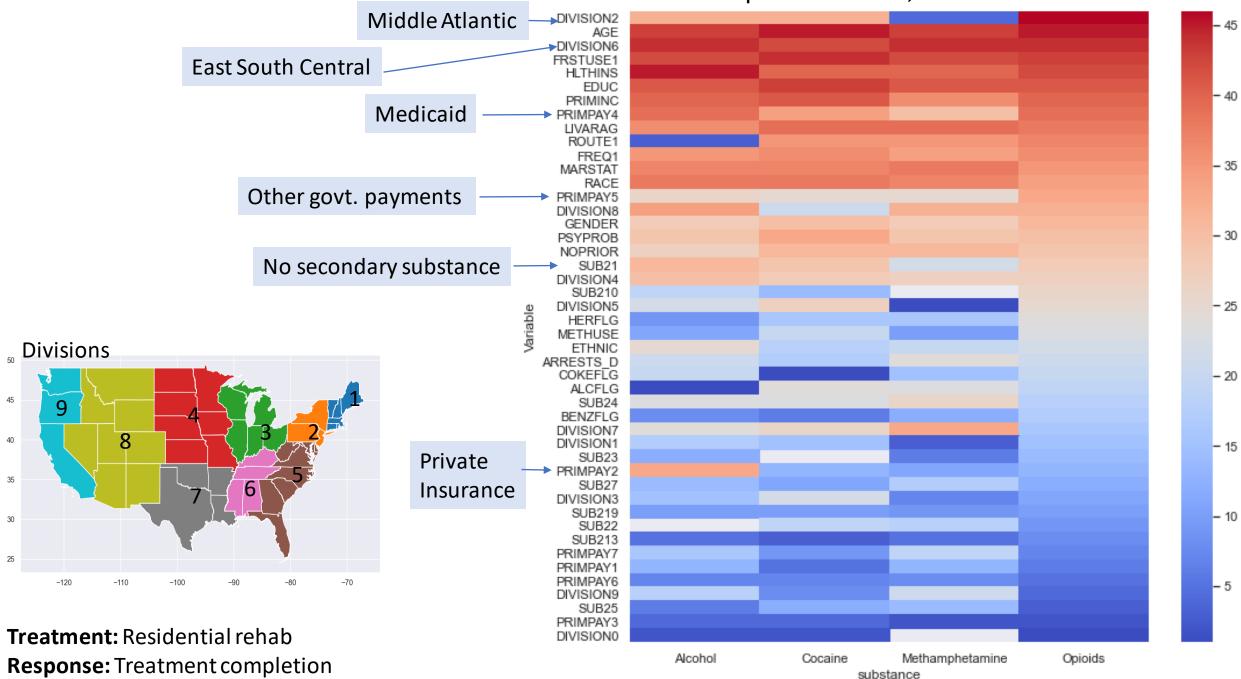
Total people in treatment per substance, by race and education level

Substance			White, non- Hispanic		High school			Some high school
Alcohol	92275	1735	298258	50877	219789	25887	108695	74028
Cocaine	37154	336	39151	4433	43073	5426	17448	20624
Opioids	58004	1813	368718	23522	252166	27616	104645	93706

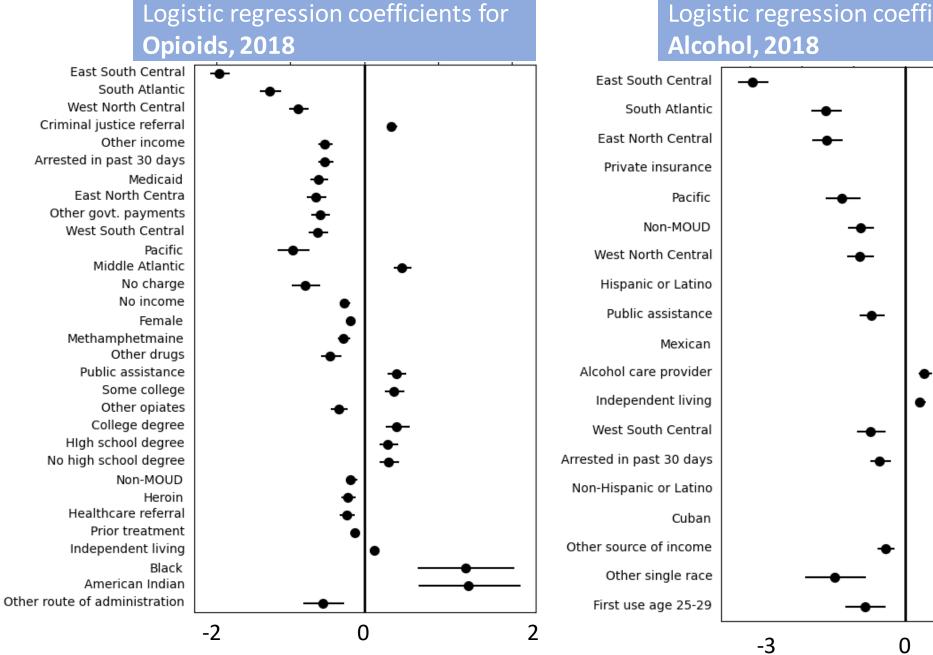
Predictability across substances

Year: 2010-2018 Substance: Opioids, Cocaine, Alcohol Treatment: Residential rehab Response: Treatment completion

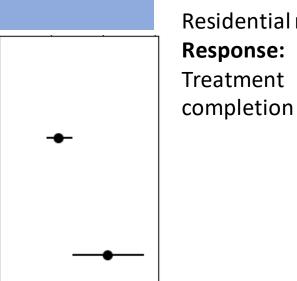




Variable importance ranks, 2018

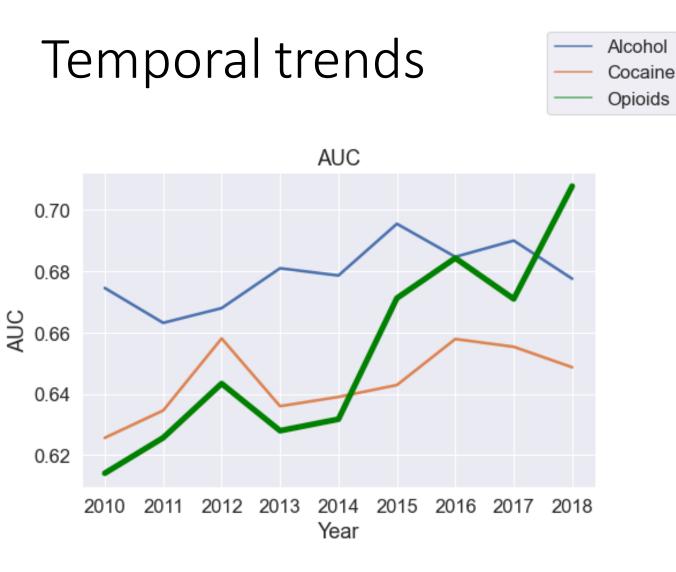


Logistic regression coefficients for

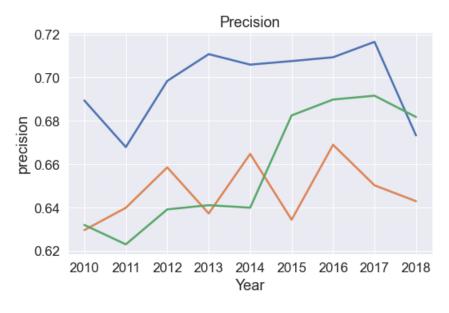


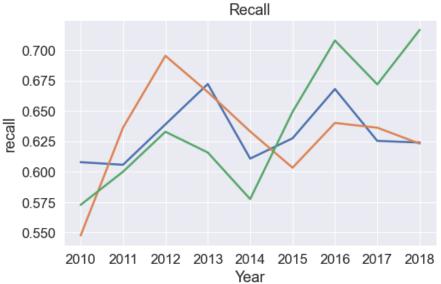
3

Year: 2018 **Treatment: Residential rehab Response:** Treatment



Year: 2010-2018 Substance: Opioids, Cocaine, Alcohol Treatment: Residential rehab Response: Treatment completion

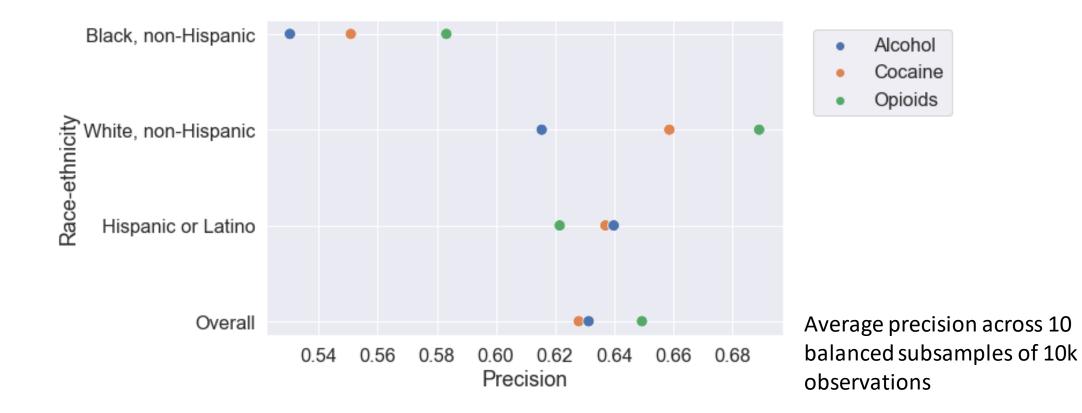


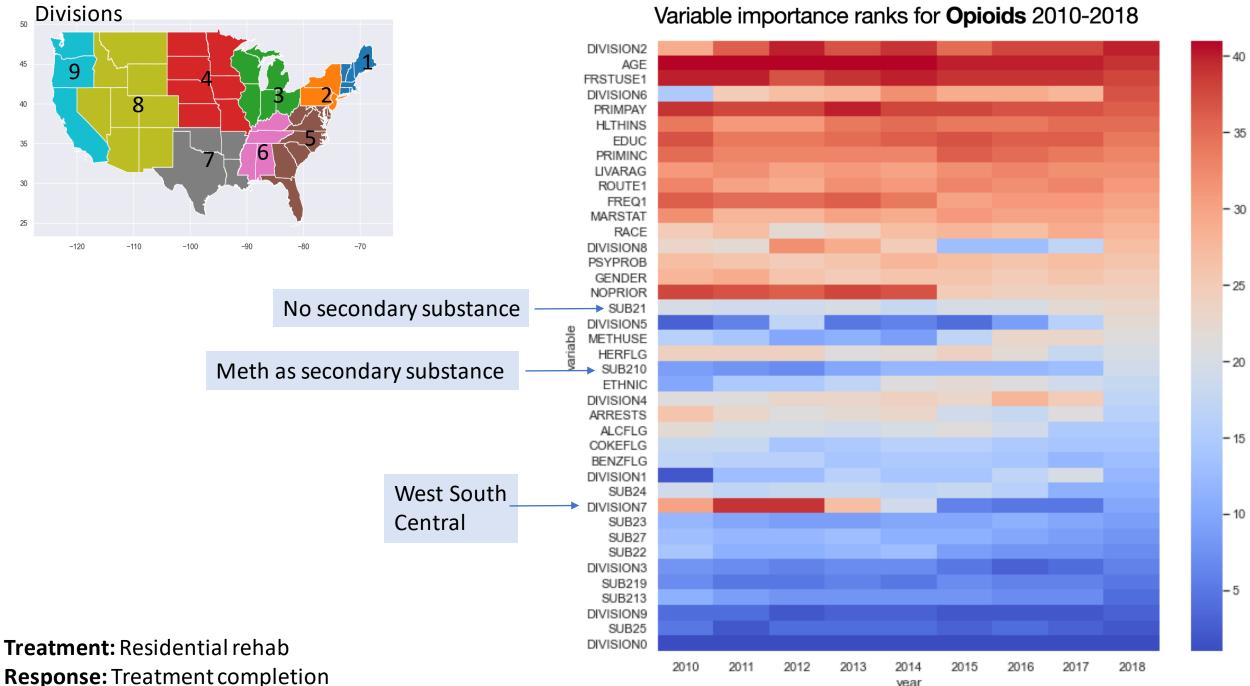


Averaged across 10 balanced subsamples of 10k observations

Year: 2010-2018 Substance: Opioids, Cocaine, Alcohol Treatment: Residential rehab Response: Treatment completion

Are the predictions fair?

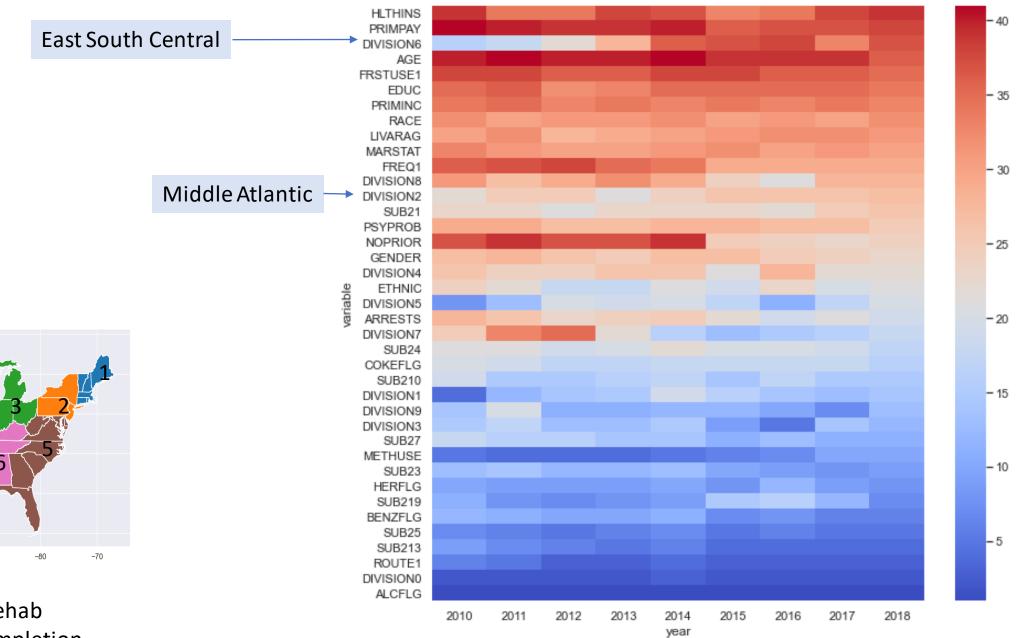




Response: Treatment completion

year

Variable importance ranks for Alcohol 2010-2018





Treatment: Residential rehab **Response:** Treatment completion

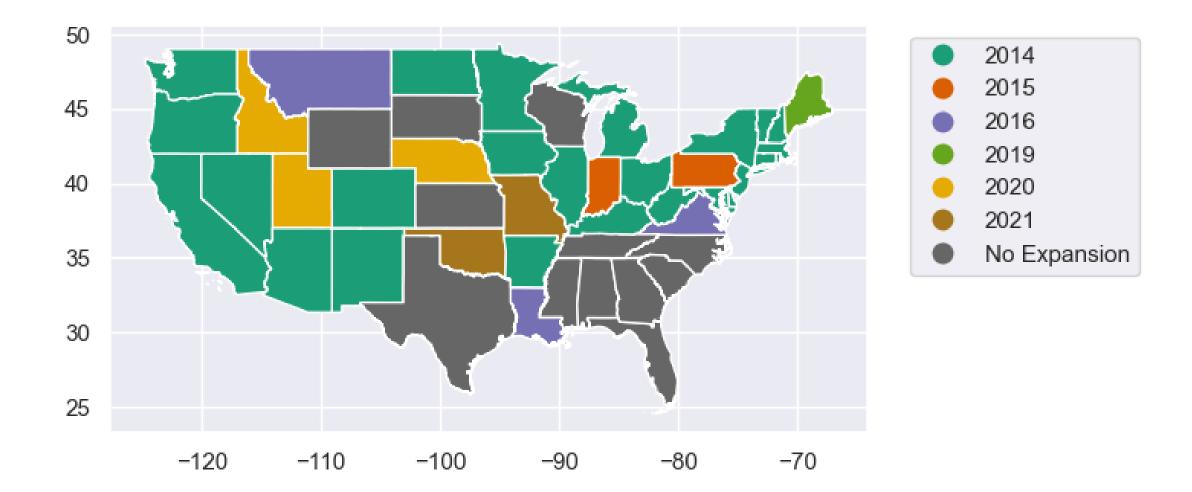
-100

-90

-120

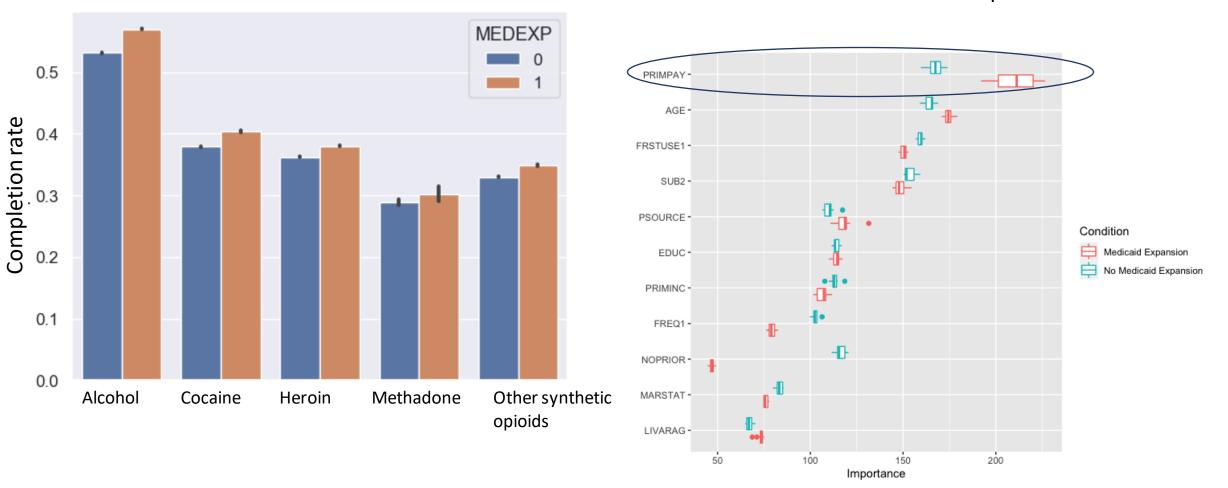
-110

Medicaid expansion



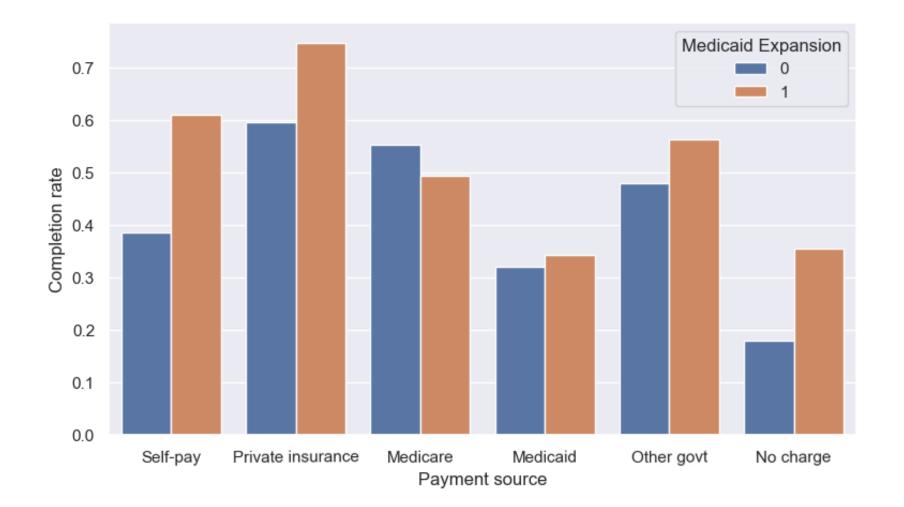
Medicaid expansion

Year: 2010-2018 Substance: Opioids Treatment: Residential rehab in Medicaid expanded vs. non-expanded states Response: Treatment completion "DIVISION" was removed as a predictor



Medicaid expansion

Year: 2010-2018 Substance: Opioids Treatment: Residential rehab in Medicaid expanded vs. non-expanded states Response: Treatment completion

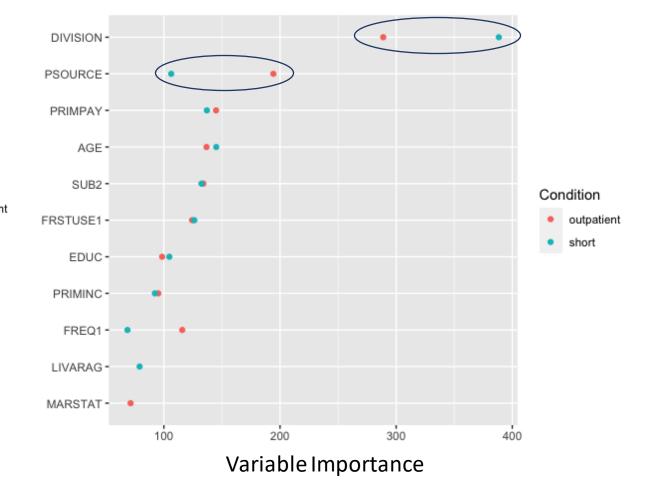


Short-term rehab vs. non-intensive outpatient treatment

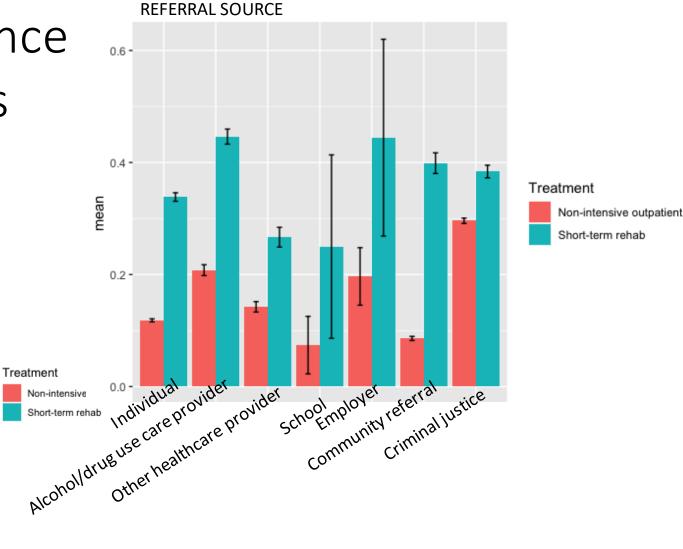
0.800 -. 0.775 -Service AUC outpatient . short 0.750 -0.725 -ŔF Logistic Method

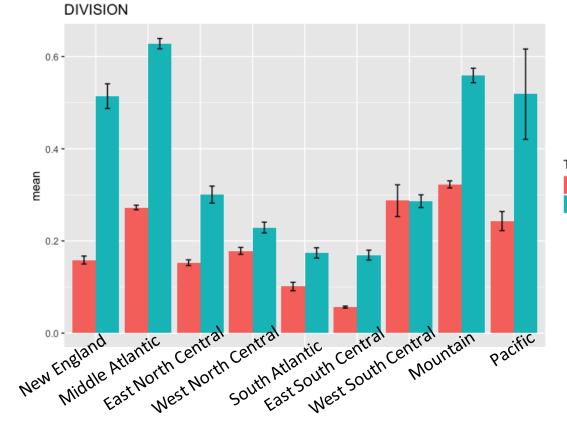
Year: 2018 Substance: Opioids Response: Treatment completion

Variable importance from Random Forest

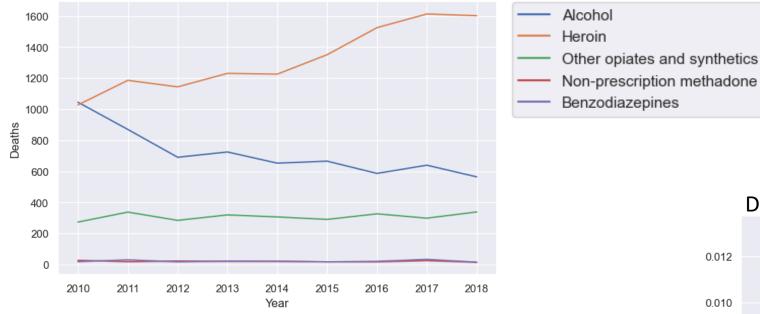


Variables whose importance diverged between groups

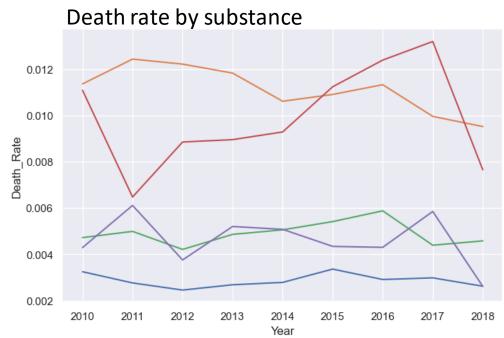




Total yearly deaths occurring during nonintensive outpatient treatment



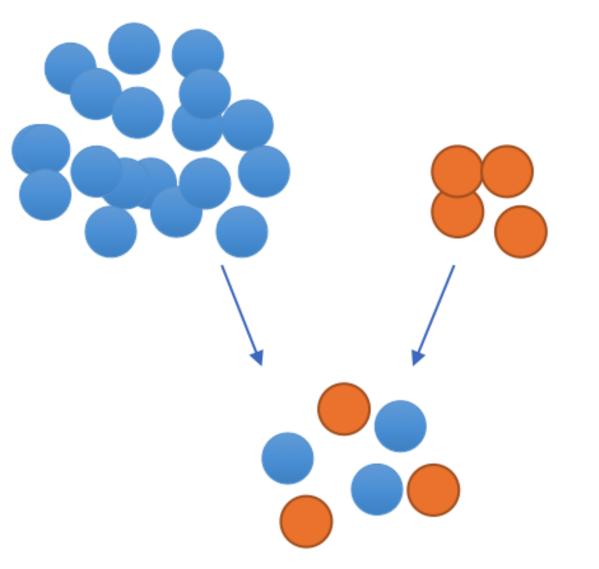
- Deaths while in treatment are rare, occurring in only 0.2% of cases
- Non-intensive outpatient deaths account for >80% of all <u>observed</u> deaths across treatments
- Death not so rare in outpatient opioid disorder treatment.



Downsampling for imbalanced classes

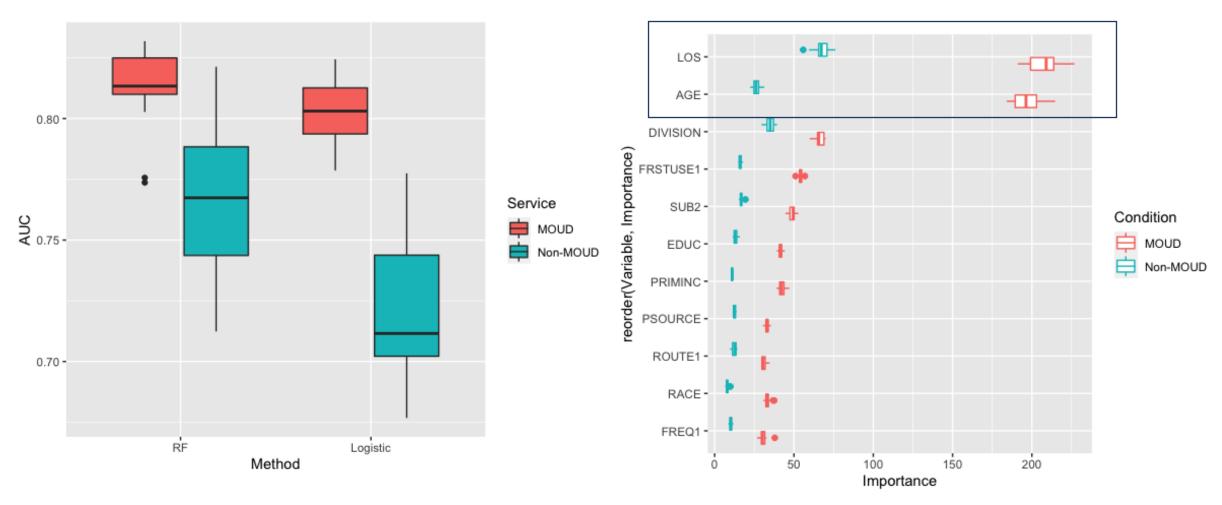
When one of the classes makes up just a small fraction of the training data, the model will spend most of its time learning from the other class

Solution: dowsampling



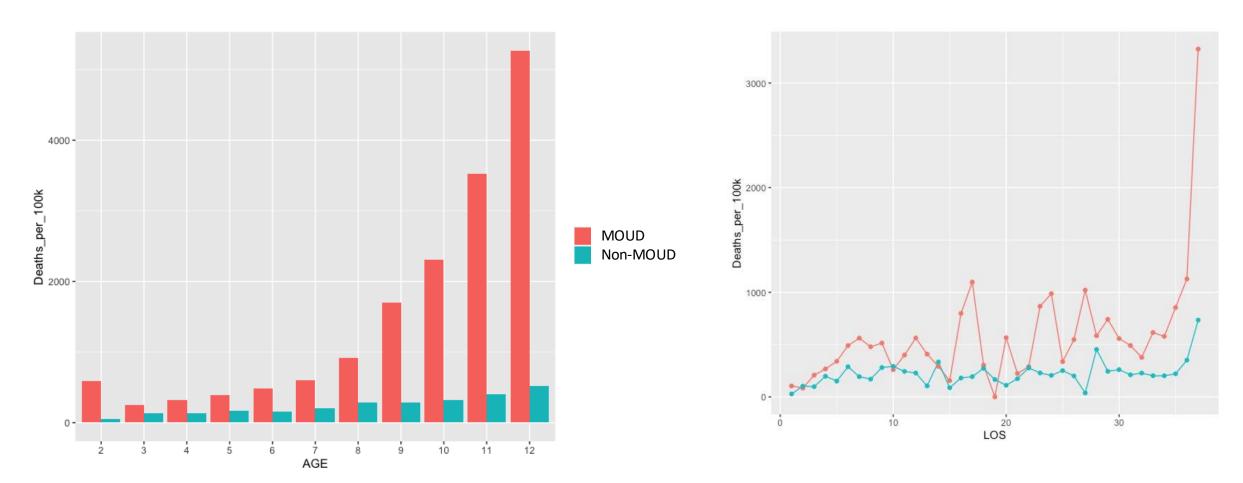
Year: 2018 Substance: Opioids Treatment: Non-intensive outpatient Response: Treatment terminated by death

MOUD & Mortality



MOUD & Mortality

Year: 2018 Substance: Opioids Treatment: Non-intensive outpatient Response: Treatment terminated by death



Motivates further investigation

Conclusions

- Machine learning offers modest but real predictive boost
- Important variables emerge from the model to help direct further analyses
 - Predictability of successful completion of opioid residential treatment has increased since 2010; not true for alcohol/cocaine.
 - Geography consistently emerges as a strong predictor
 - Note for further studies: this could potentially be linked to reporting bias. Should treat carefully.
 - MOUD + age/length of stay linked to opioid mortality—not a causal link, but an important marker and clinical reality in this space.